A Performance Analysis of Omnidirectional Vision Based Simultaneous Localization and Mapping
نویسندگان
چکیده
This paper presents a performance analysis of omnidirectional vision based Simultaneous Localization and Mapping (SLAM). In omnidirectional vision based SLAM; robots perform vision based SLAM using only monocular omnidirectional cameras. In this paper, we mainly investigate the use of an omnidirectional camera for Extended Kalman Filter (EKF) based SLAM. To evaluate the success of omnidirectional vision based SLAM, we have also conducted the same simulations using a laser range finder (LRF). Main contributions of this paper are the use of an omnidirectional camera to perform SLAM in the Unified System for Automation and Robot Simulation (USARSim) environment, which is controlled by MATLAB in our study. The results of USARSim simulations show that depending on the environmental conditions omnidirectional cameras can be used as an alternative to other range bearing sensors and stereo cameras.
منابع مشابه
Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملMonocular Omnidirectional Vision based Robot Localisation and Mapping
Robot localisation is an important task in mobile robotics. In this paper a 2D simultaneous localisation and mapping implementation that uses only monocular omnidirectional vision is presented. Experiments are performed using a novel hybrid-simulation method to evaluate the SLAM algorithm based on the sensor model and the layout of the environment. Tests are then carried out that show the advan...
متن کاملMulti - robot Mapping Using Omnidirectional - Vision SLAM Based on Fisheye Images
© 2014 Yun-Won Choi et al. 913 http://dx.doi.org/10.4218/etrij.14.0114.0584 This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas– Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapp...
متن کاملVision Based Estimation, Localization, and Mapping for Autonomous Vehicles
In this dissertation, we focus on developing simultaneous localization and mapping (SLAM) algorithms with a robot-centric estimation framework primarily using monocular vision sensors. A primary contribution of this work is to use a robot-centric mapping framework concurrently with a world-centric localization method. We exploit the differential equation of motion of the normalized pixel coordi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012